

DSN Support for Human Space Flight Program

Joe Statman

Deep Space Network

Jet Propulsion Laboratory, California Institute of Technology.

© 2017 California Institute of Technology: Government sponsorship acknowledged.

Introduction

- For the first time since the Apollo era, NASA is planning on sending astronauts on flights beyond Low Earth Orbit (LEO)
 - EM-1 will be unmanned and EM-2, carrying astronauts, will follow
- Longer-term plan is being developed for deep space exploration

Exploration Possible Mission

- Multiple NASA networks will support each Exploration mission
 - Based on distance from Earth

Approach to Deep Space Mission Support

- DSN sites were optimized for operations above Geo-Synchronous Orbits (GEO)
 - Provide close to 24x7 coverage, depending on spacecraft trajectory
- DSN equipment is optimized to track missions above GEO altitude
 - Large fully-steerable antennas with precision pointing
 - Cryogenic receivers for weak signals
 - High power transmitters
 - Specialized algorithms
- NASA's Near-Earth Network (NEN) and Space Network (SN) are optimized to track sub-GEO missions

Simplified DSN Visibility - looking down on the Earth's North Pole

SLS and Orion – DSN Roles

Space Launch System

Not tracked by DSN

ICPS (for EM-1), EUS (after EM-1)

EUS is tracked by DSN. iCPS is not

<u>Orion</u>

Tracked by DSN

Communications Approach

- DSN focus is on tracking at altitudes of GEO and higher
 - Hand-offs to/from SN/NEN for sub-GEO tracking

Communications/Navigation Needs

- DSN is designed as a multi-mission capability (~40 missions supported at any time) with broad adherence to international inter-operability standards
 - The HSF missions are supported within this framework
- HSF will be supported near-24x7 coverage at altitudes of >GEO with a prime 34m antenna, and a backup 34m antenna if needed
 - Additional 34m antennas were added at the Canberra site and are being added elsewhere
- While EM-1 uses just S-band communications, the DSN is equipped to support future S-band, X-band, and Ka-band communications
 - Plans for optical comm capability are underway

Design of Communications Link

- DSN and Orion were upgraded to enable DSN support
 - Getting more consistent with CCSDS formats (that DSN uses)
 - Adding non-regenerative capability and residual carrier
 - Enable Doppler and ranging
 - Moving to newer, more powerful error-correcting codes
 - E.g. Low Density Parity Codes (LDPC)
- For EM-1 and EM-2, the approach (driven by cost-effectiveness) was to selectively upgrade Orion and the DSN

Navigation Approach

- For LEO missions, GPS is available for navigation
 - But beyond GEO, DSN-based ranging and Doppler is needed
- For EM-x missions, above-GEO navigation will use Doppler and ranging from DSN sites
 - Challenging task, especially at Mars distances, but well-developed
 - Under consideration is the addition of a set of 3-way Doppler measurements that involve DSN stations and non-DSN stations

Ops Scenario changes

- The Ops scenario for Human missions is different than for robotic
 - Joint effort of DSN and missions to implement adjustments
- Examples: Emergency communications, voice/video, human in the loop operations, uplink of news/movies/sports, and private 2-way medical conferences and family conferences.

Voice and Video Challenge

- Orion will need voice and, preferably, video connection with Earth
 - Operations have to contend with latency. At a minimum, latency will be the Round-Trip-Light-Time (RTLT)
 - Imagine trying to have a 2-way discussion (audio or video) with an astronaut, with a 2-3 seconds or more delay inserted (for lunar distances) or 20 minutes delay (for Mars distances)!
- Partially addressed by tightening delays in the system
 - Though cannot overcome RTLT

Summary

- The DSN is ready to support planning for Human missions to lunar distances
 - -Including the Initial Cis-Lunar Habitat (ICH)

And support Human exploration further into space